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INTRODUCT ION

In the field of Communications and Information

distinguishing and identifying are certainly basic opera-

tions. Identifying things by their names or distinguishing

between different mathematical objects, such as words or

messages, by their properties, are operations which need to

be restudied when we want to get them done by electronic

hardware. It is remarkable h~ow complex such simple conside-

rations can become as, for example, telling whether two

small networks are isomorphic or not.

Several conceptual tools which may be of some use to

these areas of Electrical Engineering have been gathered

together in recent decades under the heading of "Graph

Theory". Actually one of the earliest (and one of the best)

theorem- of what is now called graph theory was discovered

and proved by Kirchhoff in the 1841 work [1,21, in which he

expounded Kirchhoff's Laws.

Moon [3] gives a detailed history of e'evelopments

stemming from Kirchhoff's result, typified by the ma~crix

*tree theorem, which tells us that the number of spanning

trees of a graph can be expressed as the determinan~t of a

matrix whose entries depend on the graph. Apparently

Electrical Engineering has already contributed mauch to the
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similar. oAn raphptendix wil reviewps givraph ths eoretic g

for existing at all.

This paper offers several new theorems about graphs,

with the hope that one way or another they will be of some

4 use to Electrical Engineering. Each chapter can be read

independently of the others even though the topics are quite

similar. An appendix will review the graph theoretic

terminology used here.

Chapter 1 contains one new theorem, which can be stated

as follows. Let i tree with n nodes be given. If it is

possible to label the edges with integers in such a way that

the (n) path sums take all the values 1, 2,...,(n), then

there must exist an integer m such that n - m2 or n - m2 +2.

When such a tree exists it can provide an effir-ient

resisiance standard, by making the edge labels be the values

of resistors.

Chapter 2 introduces a notation which could be read

A"A choose B" for graphs A, B. Let (,) equal the number of

subsets of nodes of A for which the induced subgraph is iso-

morphic to B. The following theorem came as a surprise to

several competent graph theorists. Let graphs G and H both
S4

have girth >k, both have n nodes, and both be regular with

the same valence. If F is any forest with total spread <k,

then (GF H

We might find the actual calculation of (G) too di.ffi-

cult in some particular case,. but then succeed using H.

2



Such an application of the theorem is illustrated by the

following computational result. Let F be the forest consis-

ting of 4 nodes with no edges. Let G be any regular graph

wi~h n - 2m nodes, girth >4, and valence - 3. We find that

T s2mj - 2, + OOm - 147).

Chapter 3 initiates the exploration of a new concept in

graph theory, formulated by this writer. When can we be

sure of making a choice conZLsting of one symbol from each

node of a graph, with distinct symbols on adjacent nodes?

If the same set of symbols is available to choose from at

is k-colorable. But if we bnly know that k will be the

"H number of symbols available at every node, and have to face

the possibility that different nodes may get different

k-sets, then the question is asking whether the graph is

k-choosable. If a positive integer f(j) is the number of

symbols available at the jth node, then the question is

asking whether the graph is f-choosable.

The change of wording, which converts a colorability

question into a choosability question, makes a big change

in the amount of information needed to answer the question.

It is a remarkable combinatorial fact that there is no

upper bound to how much the choice number of a graph can

differ from the chromatic number. In fact no matter how

big k is, there will exist a complete bipartite graph which

is 2-colorable but not k-choosable.
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The main results of this chapter, presented in nine

theorems and seven open questions, are the joint work of

this writer with Arthur L. Rubin and Paul Erd6s.

Chapter 4 contains a discussion of the m-pire problem

on the sphere and on the torus, together with some related

problems. Two constructions show that the 3-pire chromatic

number of the sphere is 18, and the 4-pire chromatic number

of the sphere is 24. Heawood conjectured in 1890 that the

m-pire chromatic number of the torus would be 6m+l, for

all m. Heawood's conjecture is proved true in this chapter

by a const.'uction scheme using an infinite family of grace-

ful triangulations of the sphere which was given by

S.W. Golomb in 1972.

An application to VLSI layout problems could be as

follows. When a nonplanar graph has to be realized in a

flat (planar) design "layout", the usual expedient is to

introduce crossings or use several layers. An m-pire

scenario would always use two layers, one layer for

"connections" and one layer for "nodes", with each node

reaching the connection layer in several places.

In Chapter 5 the main object of study is an nxm array

of dots and blanks having the property that the absolute

vector difference between two dots is never repeated.

These are called synchronization patterns because in any

position reachable by horizontal and vertical shifting such

a pattern will overlap with the original in at most one dot

location. 4
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With the number of dots maximized these patterns

represent 2-dimensional Golomb rulers, concerning which

there are still several open problems. Another type,

suited to r- sonar applicatio.. used by Costas, has exactly

one dot in each row and column of an nxn array. Construc-

tions due to L. Welch and A. Lempel provide examples of the

Costas type when n is 1 or 2 less than a power of a prime.

It is still an open problem to prove that an nxn pattern

with n dots exists for all n (Costas type or Golomb type).

Several applications to radar, sonar, and synchroniza-

tion problems are discussed with examples of small patterns

optimized under different combinations of requirements.

An exhaustive enumeration of the Costas type is exhibited

up to 6x6.

5 I
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CHAPTER 1

ODD PATH SUMIS IN AN EDGE-LABELED TREE -

A PROBLEM DUE TO JOHN LEECH

According to one of many equivalent definitions, a tree

is a graph on n nodes in which each of the (n) pairs of j
nodes is connected by a unique path. Thus if each of the

n-i edges of a tree is labeled with an integer, then each

of th. (n) pairs of nodes has associated with it a uniquely

determined path sum. In the remarkable edge-labeled tree j
of John Leech (Figure 1-1) the integers have been chosen to

make the path sums run consecutively from 1 to It

turns out that a key question concerns the number of odd

< 4

Figure 1-1. The Leech Tree

6
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path sums. A two-coloration trick, introduced below, will

show that there are only a few possibilities for that

number, over arbitrary labelings of the edges with in-egers.

Let an edge-labeled tree be given, and choose one

node to start ,,-.th black. Proceed along the edges to all

the nodes of the tree, changing b.ack to white or white to

black across an odd edge, but keeping the same color across

an even edge. When every node has been reached, each odd

edge will connect a white node to a black node, and each

even edge will connect black to black or white to white.

The same property will hold for path sums as well. Indeed,

the unique path between two nodes will have an odd sum if

and only ifit makes an odd number of color changes. Thus

any path sum will be odd if and only if the path has a

black node at one end and a white node at the other end.

That is our two-coloration trick, and it answers our key

question as follows: (BW) If the edges of a tree with n

nodes are labeled with integers, then the number of odd

path sums must be equal to bew, where b+w - n.

Evidence that (BW) is non-trivial appears in [4] where

John Leech asked for those trees on n nodes which could be

4 edge-labeled to make the path sums take the consecutive

values 2,...,&•). He gave the complete answer for n 1 6,

including the example of Figure 1-1, but said he could offer

no information for n > 6. By virtue of (BW) we can easily

show that it is impossible fcr certain values of n.

7



W hen (n) is even, consecutiveness requires that exactly

half of the path sums be odd. In this casq we require

nonnegative integers b and w such that b+w = n and Zbw

n(n-l)/2. This reduces quickly to the requirement that

n a (b-w)2 When (n) is odd we must have b+w = n and

2bw - n(n-l)/2+l, which reduces quickly to n (b-w) 2 +2.

Thus an edge-labeled tree on n nodes cannot have the

consecutive path sums 1,...,(n) unless, for some integer

m,n - m2 or n - m2 +2.

Asymptotically speaking, this says that for almost all

values of nno tree on n nodes can be labeled as in

Figure 1-1. Fan Chung of Bell Labs informed me that 5hu Lin

did a computer search over all trees with n - 9 nodes, and

found that none of them could be labeled like Figure 1-1. It

is not known whether any exist with n > 9 where n - m2 or

2n = m +2. I recommend that the reader compare these edge-

labeling questions with the node-labeling results and

questions to be found in the article [5] by Solomon W.

Golomb and I thank him for several conversations and much

encouragement.

8



CHAPTER 2

COUNTING INDUCED SUBGRAPHS

2.1 Introduction

For graphs A,B, let ( denote the number of subsets of
nodes of A for which the induced subgraph is B. If G and H

both have girth >k, and if ( ) - ( ) for every < k-node

G H.Sathtree T, then for every k-node forest F, (F C). Say the

spread of 3 tree is the number of nodes in a longest path.

If G is regular of degree d, on n nodes, with girth >k,

and if F is a forest of total spread <k, then the value of
G
(F depends only on n and d.

L R

Figure 2-1. The Graph L and the Graph R

9



In Figure -2-1. L and R are both regular with d *2, I
I'that is, Z edges on each node. Both have girth >4, that is

no cycle on <4 nodes. By direct count L-R*25, as
___F F~

predicted by our theorem. F is the 4 node forest with no

edges.

In Figure 2-2 we have two graphs D and P both regular

with n - 20, d - 3 and girth >4. Again our theorem tells us

D P
F1 F) for any forest F with 4 nodes, but in this case

Ithe direct count to find the number takes more work.

D

Figure 2-2. The Dodecahedron and Two

Copies of the Petersen Graph I0



In connection with self-checking networks of micro-

computers, Simoncini made the following conjecture in 1977.

If a graph is regular and has girth >4, then, among all the

k-subsets of nodes, the number of k-subsets which induce e

edges will depend only on the number n of nodes in the

graph, and on the degree of regularity d.

First Simoncini proved it for e - k-l, in which case

the induced subgraphs are trees. Working together we

verified the conjecture up to k - 5. Later in the fall of

1977 Taylor proved that if any k-node forest F is given,

then the number of k-subsets that induce F will depend only

on n and d in a graph that is regular and has girth >k.

Thus the conjecture is true, and somewhat more.

The lemma was obtained by Taylor early in 1979 --

incorporating the extension, suggested to Schwenk -- to

forests with total spread <k.

2.2 Main Results

Let us say that the spread of a tree is the number of
I

nodes in a longest path. The total spread of a forest

""ftould be the sum of the spreads of its connected components

(trees). A graph has girth >k iff it has vio circuits on <k

nodes. Two trees in G are adjacent if the union of their

nodes induces a connected subgraph of G.

We start with a notation which could be read, "A

choose B".

11



Definition

For graphs A,B let B) denote the number of subsets of

nodes of A for which the induced subgraph is B.

Lemma

Suppose both G and H have girth >k and suppose

G H ) for every tree T of spread <k. Then (G)

for every forest F of total spread <k.

Proof

We induct on c, the number of components of F. tO

(H)course when c - 1, F is a tree, and (F) - (F) by assumption.y

For F with c > 1, choose T a component of F, and say
F* F-T. We know inductively that (F . (H} also that

G H and hence that

G G H H

Observe that -T) counts the occurrences of a unionofone ofth () o
of neof he(,*) subsets with one of the ()subsets.No

we can count those occurrences another way, as follows. Let

WI,...,W m be the family of distinct forest induced by such

unions. We know that the unions induce only forests

because of the girth condition. Looking at each forest W.i
by itself, let wi be the number of times it occurs that one

of the (W) in union with one of the (Wi) induces all of W..

Thereby, summing over i,rWi ( G) counts the occurrences of
the unions in G, and similarly Wi(W ou) counts them in H.

12the nion in , an simlarl W



Ly' two counts we have

0~W (F*)

and similarly

i -H (H*) (
1

We can say W1 = F, and observe that each of W

has fewer than c components. Inductively for i > 2 we

know that

IH

Wi WG) W(~ H)
1 ji

From the above equalities we conclude that

wj( ) W GI•)

Of'c-,urse W1  0 0. Thus finally

G H

Theorem

Suppose G and H both have girth >k, and suppose each

has n nodes, and each is regular of degree d.
G =HThen (G for every forest F with total spread

< k.

Proof

In view of the lemma, it will suffice to prove it for

every tree T of spread <k. We induct on the number of nodes

of T. 13L _ __ _



If T consists of a single node, then H n.

For T with more than one node, choose x an end node of

T, and say S is the tree T-x. We assume ( ) - (S), and

must show G H(). Suppose a is the number of nodes of
S at which adding an edge to x will reconstitute T.

Suppose each such node has b edges of S on it.

Let S be one of the (G) subsets. Because G has girth

>k, and because T has spread <k, there will be exactly

a.(d-b) nodes of G available to increase S to a subset
counted by (T). We can say that (G).a.(d-b) is the number

of occurrences of S in T in G. The same occurrences qre

also counted by GT) and so

T)CS) - ( ).a.(d-b).

Likewise

H T *H

Y(S) (S).a.(d-b).

Of course (T) 0.

Thus we conclude (G) (H and the proof is complete.

Remarks

Repeating the main step for trees make it easy to prove

the following, for G ,nd H as in the theorem.

(i) For trees T and S, with spread T + spread S < k,

let Tg be one of the (TG), and let Th be one of the

H•) Then the number among the (G) adjacent to

14



H
T is equal to the number among the (S) adjacent

to Th

Putting (i) together with the lemma makes it easy in turn

to prove (ii).

(ii) Let T be one component of a forest F, with total

spread <k, and say F-T a F* is not null. L-t

Gt be the graph induced on those nodes of G thatit

* are not adjacent to Tg and let Ht be the graph

induced on those nodes of H that are not adjacent

Discuss ion

Our results pertain to the braod problem of counting

induced subgraphs of various types. For k 3 3 the same

results could be derived from [6, 8, 9, 10]. Somewhat

related problems can be found in (7, 11], listed hqre just

to invite comparison. By way of acknowledgement, we

specially wish to thank Allen Schwenk for his very helpful

comments.

Lastly, here are the results of two sample

calculations.

(1) If F is the k-node forest with no edges, and G

is any regular graph with n nodes, girth >k, and d = 2,
then

15



F IR -1

(2) If F is the 4 node forest with no edges, and G is

any regular graph with n - 2m nodes, girth > 4, and d - 3,

then

G m - 2 Om-4)
T -(Zm 3  24m + 100m 147).

The dodecahedron, D, and one graph, P, consisting of

two copies of the Petersen graph, both have 1510 induced

copies of F. Thus in Figure 2-2 we have ( 'DF) " *0.

'-I
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CHAPTER 3

CHOOSABILITY IN GRAPHS

3.1 Introduction

This chapter treats a new concept in graph theory,

choosability, and a resulting new parameter, the choice

number of a graph.

At the tenth Southeastern Conference on Combinatorics,

Graph Theory, and Computing, in April 1979, Jeffrey Dinitz

posed the following problem. Given an mxm array of m-sets,
is it aiways possible to choose one from aach set, keeping

the chosen elements distinct in every row and distinct in

every columný Although simple to state, Dinitz's problem

has turned out to be difficui~lt to answer. This writer has

proved that the answer is YES for m < 3, but hot heard of

any results for m > 4. It was in the course of working on

this problem that the idea arose naturally of letting an

adversary put a set of letters on each node of a graph

(allowing possibly different sets on different nodes), and

then trying to choose a letter from each node, keeping

distinct letters chosen from adjacent nodes. What follows

represents work done by this writer jointly with Arthur

Rubin and Paul Erd*s.

17



Let the nodes be named 1,2,...,n in a graph G. Given

a function f on the nodes which assigns a positive integer

f(j) to node j, we'll require that the adversary put f(j)

distinct letters on node j, for each j from 1 to n. Now

we'll say that G is f-choosable if, no matter what letters

the adversary puts, we can always make a choice consisting

of one letter from each node, with distinct letters from

adjacent nodes.

Using the constant function f(j) = k, we'll say that

the choice number of G is equal to k if G is k-choosable

but not (k-l)-choosable.

For the complete graph with n > 1, it is always true
Sthat the choice number of K is equal to n.

n

Since one of the things the adversary may do is put

the same k-set of letters on every node of G, it follows

that the choice number- choice #G > xG = the chromatic

number of G. Figure 3-1 shows an example of a graph

Figure 3-1. A 2-colorable Graph

18



which is 2-colorable (therefore has chromatic number <2) but
not 2-choosable (therefore has choice number >2). If the

adversary uses the pattern pictured in Figure 3-2, then

no choice of one letter from each node can have distinct

letters from every adjacent pair of nodes.

23 12 13]

Figure 3-2. The Graph is not 2-choosable

There is no bound on how much choice #G can 4xceed XG,

as n increases. The complete bipartite graph K is
m'M

2-colorable. But if m k - then Km'm is not

K k-choosable.

The adversary can construct a pattern to prove it

I * ~2k- 1as follows. Recall that m - ( ) represents the number of

k-subsets of a (2k-l)-set. Picture Km with m nodes in the

top row, and m nodes in the bottom row, having an edge

between two nodes iff one is in the top row, and the other

19



is in the bottom row. Let the letters be the elements of a

(2k-l)-set. Put each k-subset of letters on one node of

the top row, and on one node of the bottom row.

When we try to make a choice, we find it must include k

distinct letters from nodes of the top row - otherwise a

k-set consisting of letters not chosen from any node would

be the k-subset of letters on some node in the top row.

But now the attempted choice must fail in the bottom row

because some set of k distinct letters, already chosen from

nodes in the top row, will be exactly the k-subset of

letters put on some node of the bottom row.

Thus K is not k-choosable, when m = (-l

Figure 3-3 shows the picture when k - 3, m M (3) - 10,

and the set of letters is {l,2,3,4,S}. The dashed line is

meant to suggest the 100 edges which connect nodes of the

top row with nodes of the bottom row.

Figure 3-3. l0,10 is not 3-choosable

20



Open Question

What is the minimum number N(2,k) of nodes in a graph

G which i. 2-colorable but not k-choosable?

Bounds For N(2,k)

A family F of sets has property B iff there exists a

set B which meets every set in F but contains no set in F.

In other words F has property B iff there exists a set B

such that

1. X 0B 0 for every X F..

2. X B

Mk is defined as the cardinality of a smallest family

of k-sets which does not have property B. Although Mk is

only known exactly for k < 3, there are bounds for it.

The crude bounds

2k-l < Mk < k2
2 k+l

will suffice here. Sharper bounds can be found in P. Erd6s,

"On a Combinatorial Problem III", Canad. Math. Bull., vol.

12, no. 4, 1969.

In what follows we shall prove that

Mk < N(2,k) < 2Mk.

To establish the upper bound, we argue that Km,m is

not k-choosable when m > Mk. For the k-sets of letters
k* 21



on nodes of the top row the adversary can use a family F

which does not have property B, and use the same F on the

bottom row. if C is any set of letters chosen one from

each node of the top row, then of course X n C # v for

every X e F, and consequently there must exist W e F such

that W C C. But then in the bottom row no letter can be

chosen from the node which has W.

To establish the lower bound, we argue that Kbt is k-

choosable when b+t < Mk. With t nodes in the top row, and

b nodes in the bottom row, let F be the family of k-sets

of letters assigned to the nodes. F will have property B

because IFI < Mk, an we can use B to make our choices. j
First choose a letter of B from each node in the top row -

the choice exists because B meets each of them. Then

choose a letter not in B from each node of the bottom row

that choice exists because B does not contain any of them.

Two nodes are adjacent only when one is in the top row,

and the other in the bottom row, and their chosen letters

are distinct because one is in B, and the other is not in

B.

That completes the proof. The following theorem

summarizes the above discussion.

Theorem

2k-1 < Mk < N(2,k) < 2 Mk < k22k+2.

22



Here is all we know regarding exact evaluation of

N(2,k•.

I = I N(2,1) a 2

NI 2 = 3N(2,2) = 6

M3 = 7 12 < N(2,3) < 14

Although it is most likely that N(2,3) = 14, it would

be quite a surprise if N(2,k) - 2 Mk were to persist for

large k. We know that Mk+l < N(2,k), for k > 1.

K7 7 is pictured below with the adversary's assignment

which shows it is not 3-choosable. Again the-dashed line

indicates the 49 edges.

1 2 3 4 5 .6 7

Figure 3-4. K7,7 is not 3-choosable
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3.2 Characterization of 2-choosable Graphs

. graph is 2-choosable iff each connected component is

2-choosable, so we restrict our attention to connected

'1 graphs. To start the investigation of which graphs are

2-choosable, consider a node of valence 1. We can always

choose one of its two letters after deciding which letter to

choose from the one node adjacent. The obvious thing to

do is prune away nodes of valence 1, successively until we

reach the core, which has no nodes of valence 1. A graph

is 2-choosable iff its core is 2-choosable.

By definition let's say a 0 graph consists of two

distinguished nodes i and j together with three paths

which are node disjoint except that each path has i at

one end, and j at the other end. Thus a 0 graph can be

specified by giving the three paths' lengths. Figure 3-S

shows some examples.

1#2,27• 1#2,37

202,22 02,2,4

Figure 3-5. Examples of 0 Graphs
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Here is a proof that 2 222m is 2-choosable, for m > 1.

Let the assigned 2-sets be named as in the picture.

Bi D

"Figure 3-6. Naming 2-sets

CASE I: Suppose A1 - A2 A...- 2m~l {x,yl. From

Ai choose x when i is odd, y when i is even, so that x is

chosen from both A1 and A2 m+l. Complete the choice with a

letter from B-{xl, and a letter from D-{x}.

CASE II: Suppose the Aj's are not all equal. Find

one particular adjacent pair Ai Ai+ 1 . Tentatively choose

x - AiA , and go in sequence choosing x. 1 c A. 1 -

{xi}, xi 2 c Ai~ - {Xi 1l, ... until x, £ A1 - {x 2}. At

this point we look ahead to A2m+1 ' (b,d}, and look at B

and D. If {B,D) 0 {{xl,b},{xl,dl}, then there will exist

a choice of x e A2m+l such that B-{xI,x} 0 $ and D-fxlx}16,

25
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Ii
and so we can continue choosing X~m e A2 m - (x}
h m-i Ari- ... until x+ 1  Ai - {xi÷2 }

thereby completing the choice. But if {B,D} -{Xl*b},

{xl'd}}, then we go back to Ai Ai+ 1 and start the other

way. Start by choosing yi+l e A - Ais and go in

sequence choosing yl+2 e Ai+2 - {yi+l},... until

Y £ A m+1 " {Yzm}" Here y # x, so we can choose x, e B and

x, e D, and continue with yl e A1 - {X1 }1 Y2 e A2 - (Yi-}

... until we complete the whole choice at yi e Ai {Yi-

That completes the proof that 02,2,2m is 2-choosable.

Since an even cycle C2m÷2 is a subgraph of G2,2,2m,

we also know that all even cycles are 2-choosable.

At this point in the investigation, every 2-choosable

graph we know sbout has as its core a subgraph of some

ez,2,Zm" The remarkable fact that no others exist will be

told as follows.

Let {Kl, C2 m+2 , GZZZm:m > 1 - T.

Theorem (A.L. Rubin)

A graph G is 2-choosable if, and only if, the core of

G belongs to T.

Proof

Let G be the core of a connected graph.

The idea of the proof is to show, by exhausting the

possibilities, that either G is in T, or else G contains
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a subgraph belonging to one of the following five types.

1. An odd cycle.

2. Two node disjoint even cycles connected by a path.

H 3. Two even cycles having exactly one node in common.

* 4. ab where a#2 and b02.
a,b,c

•, 1 I 1 * o * *

We stvrt by assuming that G is not in T.

If G contains an odd cycle we are done. Thus we

proceed on the assumption that G is bipartite.

Let C1 be a shortest cycle. Note that there must exist

an edge of G not in C1 , because otherwise G would be an

even cycle.

If there is a cycle C2 having at most one node in common

with C1 , then we will be in case (2.) or (3.), and be done.

Let P1 be a shortest path, edge disjoint from CI, and

connecting two distinct nodes of C1 . (This is now known to

exist.)

If C1 U P1 is not in T, then it must be in case (4.),

in which case we are done.

Now suppose C1 U P1 is in T, so it must be a 02,2,2m,

and C1 must be a 4-cycle. Observing that there must be

more to G, we can say the following.
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Let P, be a shortest path, edge disjoint from C1 U P

connecting two distinct nodes of C1 U P1.

Next we examine six cases to see what the end nodes

of P2 might be. It will help to name the nodes of C1 as

shown in this picture of C1 U P" 1

) *1

b' b

Figure 3-7. Picture of C1 U P 1

Case (i). If the ends of P2 are two interior nodes of PI'

then we have a cycle disjoint from C1 , and are in case (2.)

again.

Case (ii). If the ends of P 2 are a and an interior node of

PI, then we have a cycle with exactly one node in common

with C1 , and are in case (3.).
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Case (iii). If the ends of P2 are b and an interior node of

Pl. then we have a path from a to b edge disjoint from Cl,

which puts us in case (4.).

Case (iv). If the ends of P 2 are a and b, we are put in

case (4.) again, as we were in case (iii).

Case (v). If the ends of P 2 are a and a', and P1 is of

length 2, then we are in case (5.). If P1 is of length >2,

then we are in case (4.).

Case (vi). If the ends of P2 are b and b', then by removing

any edge of C1 we find a e graph which puts us in case (4.).

Figure 3-8. Illustrating Case (vi)

We now know that if G is not in T, then G contains one

of the five types. Thus it only remains to show that any

graph of type 1., 2., 3., 4., or 5. is not 2-choosable.

Type (1.) is not even 2-colorable.
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To deal with 2., 3., 4., S. we can use the following

reduction. Remove a node b, and merge the nodes that were

adjacent to b. Any multiple edges that result can be

made single, and no "loops" will appear, because the graph

remains bipartite. If the reduced graph G' is not

2-choosable, then G is not 2-choosable.

To prove it, suppose G' is not 2-choosable. Unmerge,

and assign the same (x,y} to b as to all the nodes

adjacent to b. If, say, x is the letter chosen from b, then

y will have to be chosen from all the nodes adjacent to b,

and therefore a choice for G would have worked just as we.l

for G'. It is worth special notice that this proof would

not have worked for 3-choosability.

After repeated application of this reduction process,

we will only need to verify that each of the four particular

graphs shown in Figure 3-9 is not 2-choosable.

2. 3. 4. 5

Figure 3-9. Four Particular Graphs
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No choice exists for the assignments shown in Figure

ii3-10.

22

13 13

Figure 3-10. None of the Four Particular Graphs
is 2-choosable

That completes the proof of the theorem characterizing

2-choosable graphs.

3.3 A Theorem on Graph Structure
The following theorem is due to Arthur Rubin. It willlead to a characterization 

of D-choosability, 
and conse-quently to a generalization f oBrooks' theorem. But, apartfrom choosability 

considerations, 
here is a remarkable

theorem. 
31 
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Theorem R

If there is no node which disconnehts G, then G is an

odd cycle, or G - Kn, or G contains, as a node induced

subgraph, an even cycle without chord or with only one chord.

Proof (By exhaustion, and induction on n)

Assume no node disconnects G, G is not an odd cycle,

and G # Kn. Observe that a 0 graph either contains an

even cycle as a (node) induced subgraph, or consists of an

even cycle with only one chord. Thus each subcase will be
settled when we find an induced even cycle in G, or find an

induced 0 graph in G.

CASE I. There is a node of valence 2. Call it N. Remove

N, and prune nodes of valence 1 successively. Now look at

what is left.

I.1 One node. G must have been a cycle (not odd).

12 An odd cycle. G must have been a 0 graph.

1.3 Km, where m > 4. We find an induced 0 1,2,p' where p

is the length of the pruned off path.

1.4 If 1.1, 1.2, 1.3 do not hold, and still the graph that

remains after pruning has no node which disconnects

it, then we're done by the inductive hypothesis.

1.5 What remains has a node X which disconnects it. Name

the end nodes of the pruned off path A and B. First

we argue that A could not disconnect what remains,
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because contrariwise it would have to have done so

before pruning as well. Thus we know A 0 X 0 B.

What if A and B were connected by some path not

through X? If this were so, then X would have disconnected

G before pruning. Thus all paths from A to B go through X.

Let a. be a shortest path from A to B. The picture

should look something like the one in Figure 3-11.

Naturally a shortest path cannot have any chords.

AjA

Figure 3-11. Typical for Case 1.5

Let B be a shortest path from a node U adjacent to A

(U not on a, A not on S), to a node. Z adjacent to as-A.

If Z is adjacent to more than one node of a-A, letY

and Ybe the two such closest to A along a. Then the nodes

on the arc of a from A to Y2 , and on 8, induce a cycle

with only one chord, that is, a 0 graph.
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If Z is adjacent to only one node of a-A, then the

nodes of cL,3, and the path through N induce a 0 graph.

CASE II. There is no node of valence 2. Delete one node N,

and look at what is left.

II.1 It cannot be just one node.

11.2 An odd cycle y. Note first thatNmust have been

adjacent to every node of y. If y were a 3-cycle,

then G would have been K4 . Thus Y is a larger cycle,

and we find the "diamond", induced in G. It

will look like Figure 3-12.

NI

Figure 3-12. Sample for Case 11.2

11.3 If G-N is a complete graph, then since G is not Kn,
n4

there must be some node Y of G-N which is not

adjacent to N. In this case we find a diamond

induced in G.
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No

Figure 3-13. Diamond in Case 11.3

11.4 If not 11.2, not 11.3, and G-N has no node which

which disconnects it, then we're done by the inductive

hypothesis.

11.5 Otherwise the graph G-N has a node X which disconnects

it.

First we observe that the subgraph induced on nodes

adjacent to N cannot be a complete graph. If it were, then

the node X which disconnects G-N would also disconnect G.

Let a be a shortest path in G-N between two nodes A

and B which are adjacent to N, but not themselves adjacent.

If the number of edges of a is equal to 2, tnen we have

C4 or 0 2 ,,, 2 ' in the form of Figure 3-14.

Otherwise a has more than two edges, and we construct

as follows.
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or N

B B

Figure 3-14. Case 11.5

Let 5 be a shortest path in G-N, from a node C which

is different from A and B but adjacent to N, to a node Z

which is adjacent to a. (C = Z is possible).

In case Z is adjacent to two or more nodes of a, we

can identify two more nodes, as folloes.

Let Y be adjacent to Z, along a, closest to A.

Let YB be adjacent to Z, along a, closest to B.

The picture of Figure 3-15 may help remember the

above adjacencies.

A#

I

Figure 3-15. Case 11.5 3
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If YA is not adjacent to YB' then the 0 graph we find

is the induced subgraph on N,3, the arc of a from A to Y

and the arc of a from B to YB'

If YA is adjacent to YB' and YB4 B, then our 0 graph

is induced on N,S, and the arc of a from A to Y

If YA is adjacent to YB' then YB = B, then YA # A,

so it is symmetric with the previous case.

Finally, if Z is adjacent to only one node of a, then

our 0 graph is induced by N, a, and S.

The proof of theorem R is complete.

3.4 Characterization of D-choosability

To define a function D on the nodes of G, let D(j) =

the valence of node j.

Thus the question of whether G is D-choosable, or not,

is posed by specifying that the number of letters assigned

to a node shall be equal to the number of edges on that

node. We start by exploring graphs which are not

D-choosable.

Supposing G and H are two separate graphs, take any

node i of G, and any node j of H, and merge them into a

single node to produce a new grah G H H. It goes

understood that the node disconnects G H.

Generate a family non D as follows. For every integer

n > 1, put Kn into non D. Put all odd cycles into non D.
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Li
W< Whenever G E non D and H E non D, put G 0 H into non D.

A typical member of the family non D will look like

Figure 3-16.

Figure 3-16. Typical Non D

Since all complete graphs and odd cycles are not

D-choosable, it will become apparent that every graph in

non D is not D-choosable, after we prove a quick lemma.

Lemma

If G and H are both not D-choosable, then G H is

not D-choosable.

Proof

Presume the adversary's assignments used different

letters on C H. Let A be the set of letters put on node
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i of G, and let B be the set of letters put on node j of H.

Since D( D(i) + D(j), the adversary can assign AUB

to the node ) of G H, and keep the other assignments

as before the merger. When we try to choose a letter from

0 , our choice will fail in G if we take a letter from A,

and fail in H if we take a letter from B.

Next we explore graphs which are D-choosable, starting

with 0 graphs.

1 Consider an arbitrary 0 with say, c > 2. Let
a,b ,c

the nodes be named 1,2,...,n as shown in the picture

Figure 3-17.

n

4

a+ 1

2a

Figure 3-17. Arbitrary 0) Graph

Make the choices in sequence, starting at node 1. Node

11 has three letters, so we can choose a letter not in node

n. At each node in sequence there will be more letters
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than adjacent carlier nodes, until we reach node n. Node

n is adjacent to two earlier nodes, but neither of its two

letters is excluded by the choice we made at node 1. Thus

every 0 graph is D-choosable. Also, recalling our d1 .scussion

of 2-choosability, we know that every even cycle is

D-choosable.

Lemma

If G is connected, and G has an induced subgraph H

which is D-choosable, then G is D-choosable.

Proof

Assuming G-H is not empty, find a node x, of G-H,

which is at maximal distance from H. This guarantees that

G-x will be connected. Start the choice with any letter

from x, and then erase that letter from all nodes adjacent

to x. The choice can be completed because G-x is an earlier

case.

Theorem

Assume G is connected. G is not D-choosable iff

G e non D.

Proof

Take G and look at parts not disconnected by a node.

If every such part is an odd cycle or a complete graph, then

G e non D, and therefore G is not D-choosable.
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If some such part is neither an odd cycle nor a

complete graph, then Theorem R tells us that G must contain,

as a node induced subgraph, an even cycle or a particular

kind of 6 graph. By the preceding lemma this means that if

G i non D, then G is Dichoosable.

Same Theorem

Assume G is connected. G is D-choosable iff G contains

an induced even cycle or an induced S graph.

Comment

As a consequence of this characterization, we can

prove that, for large n, almost all graphs are D-choosable.

3.5 Digression * Infinite Graphs

Consider the infinite asterisk in Figure 3-18.

Figure 3-18. The Infinite Asterisk
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It is not D-choosable, because the adversay can use Z , the

set of positive integers, thus

23
4

5
6

87

On the other hand, if we disallow infinitely many

edges on any one node, we get the following.

Theorem

Let G be a countably infinite connected graph with

finite valence. Then G is D-choosable.

Proof

Let the nodes of G be named with the positive integers.

At each node the number of letters put there by the

adversary will be no less than the number of edges on that

node. Choose letters by the following rules - with i the

smallest named node from which a letter has not yet been

chosen.
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1.I rsn i does not leave a finite component

dicnnce from the rest of the graph, choose a letter x

fromnod i.Erae xfrom the nodes adjacent to i, and

remove i from further consideration.

2. If erasing i would disconnect a finite component,

deal with each such finite component before dcoaling with i.

In each finite component start with a node at maximal

distance from i, to be sure it will not disconnect the

By following rules 1. and 2. we can choose a letter

from node j for every j e Z, and never take the same

letter from two adjacent nodes.

3.6 Corollary: Brooks' Theorem

The infinite case of Brooks' Theorem is an immediate

consequence of the theorem just proved. The finite case

* is a consequence of Rubin's characterization of

D-choosability. Refer to R.L. Brooks, "On Colouring the

* I Nodes of a Network", Proc. Cambridge Philosophical Soc.,

vol. 37 (1941).

Here is the statement of his original theorem,

verbatim:

Let N be a network (or linear graph) such that at
each node not more than n lines meet (where n > 2),
and no line has both ends at the same -node. Suppose

43



also that no connected component of N is an n-simplex.
Then it is possible to colour the nodes of N with n
colours so that no two nodes of the same colour are
joined.

Ann-simplex is a network with n~l nodes, every pair
of which are joined by one line.

N may be infinite, and need not line in a plane.

Of course for D-choosable graphs, Brooks' theorem

holds a fortiori.

Now consider G e non D. Pick one node j of G, and

define a new function JD thus: Let JD(j) - I+D(j), and let

JD(i) - D(i) if i # j. We can see that G is D-choosable by

attaching an infinite tail at j, as in Figure 3-20.

Figure 3-20. Infinite Tail Attached

Lastly, with the observation that the only regular
(D(i) - constant) graphs in non D are complete graphs or
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odd cycles, we have a choice version which covers the

finite case.

Theorem

If a connected graph G is not K and not an odd

cycle, then choice #G < max D(j).

END DIGRESSION

According to a well known result of Nordhaus and

Gaddum, XG + XG < n+l. Before proving the choice version,

we state a lemma which may prove useful elsewhere.

3.7 A Choosing Function Lemma

xj Let the nodes of G be labeled 1,2,...,n, as usual.

In that order define a choosing function g, as follows.

g(j) * 1+1(i:l < i < j < n, and {i,j} is an edge ofG}I.

A choosing function has four immediate properties.

1. G is g-choosable.

1 2. choice #G < max g(j)
I -<j <n

3. g(j) < j

4. g(j) < 1+G valence j

Theorem

Choice #G + choice #• < n+l
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Proof

Label the nodes 1,2,...,n in such a way that G valence

i > G valence j if i < j. Let g be the choosing function

which results from that labeling. Let 9 be the reverse

in Z defined by ý(i) - l+1{j:l < i < j < n, and {i,jl is an

edge of N}l•

Properties 1., 2., and 4. still hold for g and •, while

j. (i) < n~l-i.

Observe that, because of the special labeling, G

valence j + Z valence i < n-l, whenever j > i. When j < i,

we have g(j) + g(i) < j+n+l-i < n+l. When j < i, we have

g(j)+j(i) < 1+G valence j + i + 'G valence i < n+l.

Hence max g(j) + max j(i) < n+l.

The proof is finished by property 2.

3.8 The Random Bipartite Choice Number

Now we present a theorem which tells that there

exist constants C1 and C2 such that an mxm random

bipartite graph will have choice number between Cllog m and1I
C2 log m. The proof will be self contained, with the aid A

of a lemma.

Having fixed m top nodes, and m bottom nodes, let

Rmm denote any one of the bipartite graphs whose edges

constitute a subset of the m2 possible top-to-bottom edges.

We think of Rm'm as having been chosen at random. Also we
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think of a "txt" as any pair consisting of a t-subset of

top nodes and a t-subset of bottom nodes.

Lemma

Suppose t > 2 and let S be the event that an

Rm,m has an empty induced subgraph on at least one txt.
<1

Then r has probability <-
(t!)

Proof of Lemma

2
The number of possible Rmm's is 2m The number of

txt's is () 2. Each possible edge empty txt is contained

in 2 -t of the R 's. Thus, the number of R 's which 1
m,m 2m2 M-tis m 2 t 2.

contain at least one empty txt is < 2m ( ).

Therefore • has probability -t 2Z " "2

z zt
7

With m < 2 , we calculate as follows.

Fm t/22  t/2t )2

t tt (t!~)

Theorem

Suppose >121, and t !~~ Then with

probability >1 - ~,we have



-,

3log mm< choice~ Rm'm <lo6

Proof

For the upper bound, we know from the discussion of

N(2,k) that if 2k-3 < m < 2 k-2, then choice #K < k.
-- ~lo m m -

This tells us that choice #R _< choice #K +

m'm - Mm im
< 31og m3 log 6'

To derive the lower bound, let k = > 120.

Using the fact that ek > kk/k!, and a calculator if

necessary, we obtain: j
Lk k

> 6k > 7 k22kek > 7k 2 kk > 7 kZ (2Zk- I) t-k.(2k .

m IT kk

Harmlessly supposing m t-k.( we next describe an

assignment of letters the adversary can use to show that

almost all Rm,m have choice number >k. (2kk1) is the number

of k-subsets of letters from {1,2,...,2k-1}. Each k-subset

is put on k t of the top nodes, and likewise on the bottom

nodes. Now consider what must happen when a choice is

attempted.

First we argue that on top there must be >k letters,

each chosen from >t nodes. Because otherwise, if <k-1

letters were chosen >t times each, we could look at a

k-subset of remaining letters. That k-subset was put on
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k.t top nodes, therefore one of the letters in it must

have been chosen > k.t/k - t times.

Similarly there, must be >k letters, each chosen from

>t bottom nodes. But then, since only 2k-1 letters were

used, there must be one letter simultaneously chosen from

t top nodes and t bottom nodes. The attempted choice fails

if this txt has an edge. Now, according to the lemma,

in almost all possible Rm'm s every txt does have an edge.

Thus the lemma tells us that choice #Rm,m > k, with

probability > 1 i " In other words, we have proved

the lower bound:

with probability >1 1 we have choice

#Rm,m >

3.9 The Random Complete Graph - Open Questions

We do not know good bounds for the choice number of

the random complete graph. Having fixed n nodes, let Rn

denote any one of the graphs whose edges constitute a

Ksubset of the (n) possible edges. We think of Rn as having

been chosen at random, and look for bounds L(n) and U(n)

for which we can prove that

L(n) < choice #Rn <U(n),

with probability 1 1 as n gets large.
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From the known bounds for XRn, we know that there
cn <Ln) O hupe

exists a constant c such that < L(n). On the upperlog n
nside we merely know thatU(r.) <

Thus a specific open problem is to prove that with
choice #R

probability -1 , n 0 as n

It would be even better to find good bounds for

K K ,...,m where the number of nodes is n rm, and

m is about the size of log n.

We do know that choice #K3.r > 4 r+c.

The only one of this kind for which we know the exact

value is K2*r, which may be of interest because it is the

only example we have whose proof uses the P. Hall theorem.

Theorem

Choice #K2 , - r.

Proof

Starting at r - 2, we already know that choice

#K2*2 ' 2. (it is the 4-cycle).

To induct, suppose r > 2, and suppose we know the

theorem for all cases <r. Let the adversary put r letters

on every node. If some letter is on both nodes of a

nonadjacent pair, we can choose that letter from both

nodes of that pair, and delete it from all other nodes.

We can complete the choice by induction in this case.
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Otherwise every nonadjacent pair has a disjoint pair

of sets of letters. Any union of <r of the sets of letters

on nodes will have >r letters. Any union of >r of the sets

will have >2r letters, because it will include a disjoint

pair. The conditions for the P. Hall theorem are satisfied,

so there exists a system of distinct representatives. That

is, the choice exists.

Here are some more specific numbers which are easily

provedr

Kklm is k-choosable for all m, all k > 2.

S k-choosable for m < kk
K is•,•i, m k "
k•: not k-choosable for m > k

3.10 Planar Graphs

Since every planar graph has a node of valence <5, it
follows easily that every planar graph is 6-choosable.

Perhaps some mathematicians, who aredissatisfied with the

recent computer proof of the 4-color theorem, still sense

that there are some things we ought to know, but do not

yet know, about the structure of planar graphs. Here we

I offer two conjectures which may incidentally add interest

to that exploration.

Conjecture

Every planar graph is 5-choosable.



Conjecture

There exists a planar graph which is not 4-choosable.

Question

Does there exist a planar bipartite graph which is

not 3-choosable?

Figure 3-21 shows a graph which is planar, and 3-

colorable, bvt not 3-choosable.

/\

123

23 134

122
12 123,

S~Figure 3-21. Not 3-choosable i
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3.11 (a:b) Choosability

Suppose a is the number of distinct letters on each

node, put there by the adversary, and we want to choose a

b-subset from each node, keeping the chosen subsets

disjoint whenever the nodes are adjacent. G will be

(a:b)-choosable if such a choice can be made no matter

what letters the adversary puts.

In terms of (a:b)-choosability we can say that if

there does exist a planar bipartite graph which is not

3-choosable, it will have been a very close call in the

following sense. If a/b < 3, then there exists a planar

bipartite graph which is not (a:b)-choosable. In fact

K will be not (a:b)-choosable.

Open Question

If G is (a:b)-choosable, does it follow that G is

(am:bm)-choosable?

Open Question

If G is (a:b)-choosable, and > •, does it follow

that G is (c:d)-choosable?

Composition Lemma

Suppose H is obtained from G by adding edges. Let S

be the subgraph consisting of those edges and their nodes.
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If S is (d:a)-choosable, and G is (a:b)-choosable,

then H is (d:b)-choosable.

Proof

Let the adversary put d letters on each node. First

make a choice consisting of an a-subset from each node,

with disjoint a-subsets on S-adjacent nodes. This first

choice can be made because S is (d:a)-choosable. Next

make a choice consisting of a b-subset from each node's

a-subset, with disjoint b-subsets on G-adjacent nodes.

This second choice can be made because G is (a:b)-choosable.

The resulting choice makes the b-subsets disjoint on

adjacent nodes of H. Thus H is (d:b)-choosable.

Corollary

If H is not 2k-choosable, and G is obtained from H by

erasing disjoint edges, then G is not k-choosable.

Here is just one more theorem - a direct consequence

of the fact that for given k and g there exists a family

F of k-sets with the following three properties.

1. F does not have property B

2. For any two distinct X,Y e F, IX fl Yj < 1.

3. The smallest cycle has length g, in the graph

which has nodeset - F, with an edge between nodes

X and Y iff IX r) YI - 1.
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For a proof of the above fact, please refer to P. Erdos and

A. Hajnal, "On Chromatic Numbers of Graphs and Set Systems",

Acta Math. Acad. Sci. Hungar., 17 (1966), pp. 61-99.

Theorem

For given k and g, there exists a bipartite graph G

such that the smallest cycle in G has length >g, and choice

#G > k.

Proof

Let F be a family of Zk-sets with properties 1., 2., 3.

above. Let H be the bipartite graph having the 2k-sets of
F as top nodes, and likewise as bottom nodes, with an

edge between a top node X and a bottom node Y iff X nfy y 4.

First observe thatHis not 2k-choosable, because F does

not have property B. Any choice including one from each

top node would use all the letters belonging to some

2k-set on the bottom.

Next obtain G by erasing those edges of H which

connect two nodes having the same 2k-set. Thus G will

inherit from F the property of having smallest cycle

length >g.

The corollary to the composition lemma tells us that

G is not k-choosable.
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CHAPTER 4

THE M-PIRE PROBLEM

The m-pire problem was started by Heawood in the same

1890 paper [12] in which he exposed a flaw in Kempe's

"proof" of the 4-color conjecture. Heawood proved, then,

that the m-pire chromatic number of the sphere will be at

most 6m, for every positive integer m. It means that for

any map c empires on the sphere, in which each empire has

at most m parts, 6m colors will be sufficient to give the

same color to all parts of each empire, while requiring

that any two empires get different colors if any part of one

touches any part of the other along a border. In these

words, the 4-color conjecture would say that the 1-pire

chromatic number of the sphere is equal to 4.

To prove the necessity of 12 colors in the 2-pire case,

Heawood drew the example shown here as Figure 4-1 Each of

the empires named 1,2,...,12 has two parts, and each of the

twelve touches all the others. It was, he said, "obtained

with much difficulty in a more or less empirical manner".

He remarked on his inability to find any regular or

symmetric arrangement, and also said, "what essential

variety there might be in such an arrangement of 12
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two-division countries, as it exemplifies, is a curious

problem, to which the one figure obtained does not affort

much clue".

In 1974 I found a different 2-pire configuration --

before I knew about Heawood's -- but mine was just as

irregular as his. Later, while struggling with the 4-pire

case, I discovered a reasonably symmetric version -- it can

be obtained by shrinking lettered faces to points in the

"left hemisphere" of Figure 4-4. Meanwhile, quite indepen-

dently, Scott Kim found the most symmetric 2-pire configu-

ration of all, shown in Figure 4-2.

That the m-pire chromatic number of the sphere would

be e ual to 6m, for m > 1, was the implicit conjecture in

Heawood's discussion. In fact, for m > 2, he clearly

thought that there would always exist a configuration of

6m m-pires each touching all the others, thereby proving

the necessity of 6m colors. As far as I know, this

problem has remained open until now for m > 2. Figure 4-3

shows the necessity of 18 colors for the 3-pire case.

Figure 4-4 shows 24 4-pires named 1,2,...,12 and A,B,...,L,

each touching all the others, and thereby requiring 24

colors. Apparently the existence of an m-pire configuration

requiring 6m colors is still an open problem for m > 4.

A digression is needed to discuss a problem posed by

Gerhard Ringel in his 19S9 book [13]. Suppose we draw a

map of 2-pires on two separate spheres, requiring that each
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empire have one of its two parts on one sphere, and one on

the other. How many colors can such a map require? Well,

the answer is only known to be 9 or 10 or 11 or 12.

Such a map on two spheres could not include nine

2-pires all touching each other, as was proved by Battle,

Harary, and K'odama in 1962. In 1974 Thorn Sulanke sent a

remarkab1d picture to Ringel. Sulanice's configuration shows

a map on two spheres requiring nine colors - - stupendous

news to anyone familiar with the problem.

Returning to Figures 4-4 and 4-5, they more than show

that the 4-pire chromatic number of the sphere is 24.

They show a map of 4-pires on two spheres, each having two

a coniiguration., for even m, would exactly fit the limiting

condi'tions which can be derived from Euler's surface

formula. This writer offers the conjecture that, for

positive even m, there will exist a map of 6m m-pires on

m/2 spheres, each having two of its m parts on each sphere,

with each m-pire touching all the others.

The m-pire chromatic number of the torus was shown by

Heawood [12] to be at most 6m~1. In 1965 Ringel [18] gave

a construction putting the complete graph on 6m+1 nodes on

m separate torii in m-pire fashion. The remarkable thing

about it was that his construction left the question open

for the m-pire chromatic number of a single torus.
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In 1974 this writer found a construction method showing
that the m-pire chromatic number of the torus is equal to

6m+l for all m. It depends on the existence of at least one

triangulation of the sphere which is graceful mode 6m+l,

and has m+2 nodes. Just such a family was included in

the article "How To Number a Graph" by Solomon W. Golomb,

SIthus providing the key to the torus problem All the graphs

in that family are graceful, and a fortiori graceful mod

6m+l, as shown in Figure 4-5.

Figures 4-6 and 4-7 illustrate the construction for

m 3 3 and m = 4. The complete graph with 6m+l nodes is put

on the torus in m-pire fashion with each node represented

by m vertices on the surface. To reform the torus the

dotted borders just need to be rejoined so that the two

halves of each border vertex agree.
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CHAPTER 5

TWO DIMENSIONAL SYNCHRONIZATION PATTERNS FOR

MINIMUM AMBIGUITY

5.1 Summary

There are numerous problems arising from radar, sonar,

physical alignment, and time-position synchronization,

which can be formulated in terms of finding two-dimensional

patterns of ones (dots) and zeroes (blanks) for which the

two-dimensional (spatial) autocorrelation functioa, the

so-called "ambiguity function" of radar analysis, has

minimum out-of-phase values (or "minimum sidelobes"),

A typical context is one in which it is desired to produce

a sequence of distinct frequencies ("tones") in consecutive

time slots, so that if a returning echo of this sequence is

shifted in both time and frequency by a moving target, the

only translate of the original pattern having high correla-

tion with the received configuration will be the one whose

time shift corresponds to the correct range, and whose

frequency shift to the correct velocity, of the target.

In this chapter, a number of closely related combina-

torial problems, corresponding to specific assumptions about

the type of time-frequency sequence which may be
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appropriate in a particular application, a-re formulated in

terms of square or rectangular arrays of dots, with

.appropriate constraints on the two-dimensional correlation

function, The current state of knowledge concerning each

of these problems is summarized. It is hoped that more

general constructions may be found, leading to larger

families of solutions, as well as better computational

algorithms for finding individual solutions which may lie

outside of the general families.

These problems may be regarded as the two-dimensional

4 analog of the one-dimensional "ruler problems", described

at length in [19] , which have application to onedimensional

synchronization and alignment problems, and to radar or

sonar situations in which the doppler shift can be

neglected. An example of a two-dimensional problem

corresponding to a square array configuration which arose

in the context of a practical sonar problem has been

described by John C. Costas in [20] and [21].

* 5.2 Introduction

We consider patterns of dots in a rectangular grid

under different combinations of requirements. The unifying

concept is that of a pattern which will give major agree-

ment with shifted copies of itself only when these are in

special positions, and otherwise only minor agreement.

In fact, our basic patterns have the property that in any
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position reachable by horizontal and vertical shifting,

other than the original position, the pattern will overlap

with the original in at most one dot location.

FigureS-i shows an example in which the number of

dots is maximized for a 3x3 array.

I@

Figure 5-1. An Optimum 3x3 Array

Another example in which the number of dots is maximized,

for a 5Sx array, is shown in Figure 5-2.

• { I

Figure 5-2. An Optimum SxS Array
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These "minimum agreement" patterns may be viewed as a

generalization to 2 dimensions of the "ruler problems"

which have numerous applications to radar, sonar, synchro-

nization, crystallograhy, etc. [19]. For example,

minimizes n in a lxn array with 4 dots.

5.3 Constellations

Two-dimensional agreement patterns of a special kind,

arising from a practical sonar problem, were suggested by

John Costas, who asked about an nxn pattern of n dots with

one dot in every row and column having the property that

any horizontal and vertical shifting would result in at

most one dot position agreement. The original application

of these "constellations" was to a sonar problem [20], but

applications to radar and to synchronization and alignment

also exist. Cons-tructions by L. Welch and A. Lempel show

that such constellations exist for infinitely many values

oi n. In fact, there are effective algebraic constructions

for n p-1 and n p- 2 whenever p is prime and m is any

positive integer, and in certain other cases as well.

On the other hand, we do not have any construction

method, effective or otherwise, for general n. In relation

to the problem of a general construction, we conjecture

that the probability of finding a constellation by random

search will go to zero as n goes to infinity. For example,

72



rT~rW= E CHO3x3 constellations

3x3 non constellations.

Figure 5-3. The Constellations and Non-constellations
when n*3

as shown in Figure 5-3, regarding an nxn array as a permu-

tation of n objects (namely, the column indices

corresponding to the successive row indices), the

probability of choosing a constellation at random for

n ~~ .i 2 However, the probability drops to

19 4
= for n =7 (determined by an exhaustive search

of this case).

Another open combinatorial question, posed by

S.W. Golomb, is whether or not any "queen constellations"

exist. As already described, constellations are necessary

configurations of non-attacking rooks. Do any exist which

are also configurations of non-attacking queens?

For both the probability question and the problem of

trying to enumerate all constellations, there is the

obvious objective of trying to find a good computer

algorithm to extract just the constellations from among all

the permutations of n symbols. 7



inown results and constructions for constellations are

presented in greater detail in Sections 5.8 and 5.9.

5. 4 SonarSequences

As observed by H. Greenberqer, the application to

,oppler sonar or radar does not require the restriction to

one dot per row - only the restriction to one dot per

column. The pattern can be read like music notation giving

a sequence of tones, but with only one tone at each beat.

When the "tones" return after being reflected from a moving

target, horizontal shift will correspond to elapsed time

and vertica4-shi-ft will correspond to doppler. The number

of rows will be limited by the context, but generally the

* number cf columns will be what we wish to maximize.

Figure 5-4 shows an example with 4 'tones which c3n extend

: t•o 8 beats.

.4"

F.gure 5-4. A 4x8 "Sonar Sequence"

It. is easy to prove that with n rows, the maximum

numbe, of columns is at most 2n. However, the above

example (Figure 3-4) of a sonar sequence which is 4Yv may
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turn out to be the last case where n 2n is actually

achievable. At least, it is the largest such case

discovered to date.

Our sonar sequence problem is to maximize m in an nxm

pattern where nis given. The largest example obtained

thus far is only 13xl8. Figure 5-S shows a l0x14 example,

which incidentally also illustrates the "palindromic method"

of construction (used because it is easier to check).

I; Figure S-5. A 10x14 Sonar Sequence

As m. may in fact get closer to n than to 2n as n

increases, there is another possible approach, suggested by

H. Greenberger, for constructing long sonar sequences.

Specifically, we could change the requirement to allow

agreement of two dots but never three dots. Then instead.

of a ratio of m:l we could seek the best m:2 configuration.

For example, Figure 5-6 shows a 3x10 pattern which can

never be shifted from its original position to cause more

than a two-position agreement o. dots.
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Figure 5-6. A 3x10 Sonar Sequence with a
Sidelobe Bound of 2

We can still prove that under these liberalized conditions,

in:2 < Zn:l, where "imo denotes the largest possible value

* of m for the given value of n. It seems quite probable,

however, that for larger n these revised sonar sequences

may achieve a better ratio than with a sidelob4 value

limited to a single agreement of dots. (A corresponding

likelihood exists for the "radar sequences": discussed

below.)

S.$ Radar Sequences ,

If the practical application does not require doppler I I
measurement, then the min-agreement patterns may achieve

still higher ratios. A radar imaging device might use

either a tonal sequence, or a pattern with one dot per

column and a maximum number of columns designed to agree

in at most one dot position after all horizontal shifts,

not caring about vertical shifts.

In this case, with n rows, when ve have an nx max

"radar sequence", we can prove that 2n < max <3n.
S,,,,6



For example, in Figure 5-7 we see a pattern for which

n =3 and max =7.

Figure 5-7. A 3x7 "Radar Sequence"

5.6 Some General Problems

a. W~e can establish a connection between 1-dimensional

ruler problems, which have been extensively

studied (cf. [19], and some of these 2-dimensional

min-agreement patterns, by the method of shearing,

as illustrated in Figure 5-8.

lowa I iN I I I !

Figure 5-8. The Method of Shearing, Used to Obtain a
l-Dimensioral R-ulTer fr-om a 2-Dimensional

, Array

(Efficient mappings in the reverse direction would be
i quite useful)
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b. Another problem is to find a pattern with the

minimum number of dots in an axb rectangule such

that no additional dots can be placed without

causing a repeat pair-,

c. Going to 3-dimensions (or 4-dimensions), we can

ask for the maximum number of dots in an axbxc

region (axbxcxd region) having no repeat vector

differences between pairs of dots. Figure 5-9

shows several simple 4-dimensional examples.

2xlxlxlJ 2x2xlxl 2x2x2xl 2x2x2x2
2 dots 3 dots

N 5 dots N M 7 dots

Figure 5-9. Some Simple Examples of the 4-Dimensional
Generalization

5.7 Sum Distinct Sets

The unifying idea in most of these problems is to

consider some limited region in a vector space or "module"

over the integers, and ask for the maximum number of

vectors which can be positioned in the region in such a way

that all pairwise sums are distinct. Two algorithms for

verifying the sum-distinct property are illustrated on the

following page:
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a. Difference Triangle Algorithm

000000
0 1 - 0 2 - [make sure rows have

1 -2 0 2 -1 no repeated signed
differences]-1 -2 2 1

1 0 1

1 -1

0

SO0
b- a"

b. Sum Triangle Algorithm

Iiii

[2,4] (2,5) (2,6] (3,4) [4,2] (5,2) [6,2] (6,4) [6,6]

(3,3) (4,4) (5,4)

(all vector (4,3) (4,6)
sums distinct] (45(4,5)

5.8 Known Constructions for nxn Costas "Constellations"

a. Construction 1. (L.R. Welch). Let p be a prime

number, with n - p-l. Pick a "primitive root"

g modulo p. Put a dot in the cell (i,j) of the

nxn array if and only if j- g (mod p), where

1 < i < n and 0 < j < n-i.
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Example: p - 11, g u 2. The powers of g modulo

11 are 1 Z,4,8,S,10,9,7,3,6. Thus the array is

as shown in Figure 5-10.

p i •" .111

Figure 5-10. A l0xlO Constellation Using the
Welch Construction

b. Modification of Construction 1:

A. Omitting the top row and the left-most column,

an nxn constellation is always obtained with

n = p-2. (See the example shown with p = 11.)

B. In the case that g a 2 (only certain primes,

including 3,5,11,13,19,29... in a subsequence

of the primes which is believed to be infinite,

have 2 as a primitive root), another row from

the top and another column from the left may

be removed to obtain an nxn constellation with

n * p-3. (See the example again with p - 11.)
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C. Construction 2: (A. Lempel). Let q be any power

of any prime number. Let a be a primitive element

of GF(q), the field of q elements. We obtain a

symmetric nxn constellation with n 1-2, by the

rule that we put a dot in the cell (i,j) if and

i
only if a + a= 1 in GF(q). Here I < i < n

and 1 < j < n.

Example: Let q - 8, and let a satisfy a + a 1.

Then also a2 + a6 1 and a4 + a 5 = i. Then in

the 6x6 array shown in Figure 5-11, dots appear

at (1,3), (2,6), (4,5), and their reflections

(3,l)., (6,Z), (5,4).

C12I lFB I iiI

Figure 5-11. A 6x6 Constellation, Using the
Lempel Construction

(Note thzt while an n - 6 exampin o occurs from
Construction 1, it will not be E .metric example.)

d. Modification of Construction 2:

A. If q is an odd prime, and 2 is primitive mod

q, then taking a = 2, Construction 2 yields an

example with c dot in the lower right-hand
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corner. Removing the bottom row and the

right-most column yields an n n example with

n - q-3. (While this is the same size as the

result of Modification B to Construction 1, it

is in general a different, and symmetric,

example.)

e. Summary of Values with Known Constructions

In Table 5-1, a summary is presented, for n < 100,

of the known constructions which 'Lead to an nxn

constellation. The constructions are identified

in the Table as 1, 1A, 1B, 2, and 2A, respectively,

and the values ofp or q being used are identified.

If there is a blank next to a given value of n,

this need not mean that no examples exist, but.

merely that the specific constructions described

herein do notc lead to examples.

5.9 Complete Enumeration of Small Constellations

An exhaustive enumeration of the Costas constellations

which are inequivalent under the dihedral symmetry group

of the nxn square has been carried out through n =7. The

results for n < 6 are shown in Figure 5-12.

Queen constellations do not exist for n < 10, as we

have discerned by surveying all configurations of n

non-attacking queens on an nxn board for n < 10. These
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Table 1

Summary of Values n for which These Constructions
Yield an nxn Example

n Constructions n Constructions
1 TRIVIAL 41 1A(pz43), 2 (q-4 3)
2 ].(p-3), 1B(p-5), 2(q-4) 42 l(P- 4 3)
3 1A(p-5), 2(ci=5) 43
4 1 (p-5) 44
5 1A(p-7), 2(q-7) 45 1A(p-47), 2(qu47)
6 1(p-7), 2(q-7) 46 1(p-47)
7 2(q-9) 47 2(q-49)
8 IB(p=11) , 2A(q=11) 48
9 1A(p-11) , ] (q-ll) 49

10 l(p-11), iB(p=13), 2A(q-13) 50 1B(p-53), 2Apu53)
11 IA(pu13) , 2(q-13) 51 1A(p-53) , 2(q-53)
12 1 (pal 3 ) 52 i(p-53)
13 53
14 2(q-16) 54
15 iA(P,17), 2(q-17) 55
16 1(p-17), iB(pml9) , 2A(q=19) 56 IB(p-59) , 2A(q=59)
17 IA(p-19), 2(q-19) 57 1A(p-59), 2(q-59)
18 I(P-19) 58 1(p-59), 2B(pq61), 2A(q)61)
19 59 1A(p-61), 2(q=61)20 60 1 (P-61)
21 iA(p-23), 2(q-23) 6122 I (p-23) 62 2 (q-64) -

23 2(q-25) 6324 64 iB(p-67) , 2A(q=67)
25 2(q-27) 65 1A(p-67) , 2(q-67)26 IB(p-29) , 2A(q-29) 66 i(p-67)
27 iA(p-29), 2(q-297 6728 i (p-29) 68

29 IA(p731), 2(q-31) 69 1A(p-71), 2(q-71)30 i (p-31), 2 (q-32) 70 1 (P-71)
31 71 iA(p-73) , 2(q-73)
32 72 1(p- 7 3)
33 73
34 1B(p-37), 2A(q-37) 74
35 IA(pi,37), 2(q-37) 75
"36 l(p-37) 76
37 77 1A(p-79) , 2(q=79)
38 78 1(p,79)
39 1A(p-41), 2(Cq41) 79 2(q-81)
40 I(p-41) 80

n Constructions n Constructiotin
81 1A(pw83) 91
82 1(p-83) 92
83 93
84 94
85 95 1A(p-97), 2(q=97)
86 96 1(p-9 7 )
87 IA(p-89), 2(q-89) 97
98 1(pi89) 98 1B(p-101) , 2A(q-101)89 99 iA(p,101) , 2(q=101)
90 100 1(p10l)
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Figure 5-12. The "Costas Arrays" Inequivalent Under the
Dihedral Symmetry Group D4 of the Square,
for n < 6
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were published in 1891 by Eduard Lucas in his book

"Recr~ations Mathematiques".
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APPENDIX

THE TERMINOLOGY OF GRAPH THEORY

The primary conce.-n of graph theory, as I understand

[ it, is the art of pict-uring a problem. However, "Graph

Theory" has acquired a restricted meaning in recent

decades so that much work has been concentrated on

"Pictures" which fit a narrow description. To a large

extent the pictorial descriptive devices have themselves

become the subject matter of abstract study.

* The now voluminous literature of graph theory often

uses two or three terms for the same thing, and contains

a confusing multitude of defined notions. It is with the

* hope that these five chapters will appear as elementary

as they really are, that just the terminology used here

is covered in the following informal discussion.

GRAPH A (simple) graph consists of a set of

NODES objects called nodes, together with a

set of 2-subsets of the nodes called

EDGES edges. A graph is completely specified

when it is told what the nodes are,

and which pairs of nodes are edges.

To make a picture of a given graph we
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can think of each node as a spot, or

vertex, or point, and think of each

edge as wire, or arc, or line segment

connecting its pair of nodes. Two

ADJACENT distinct nodes are adjacent, or joined,

if there is an edge to which they

both belong.

PATH A path is a sequence ele 2 ,...,ek

of distinct edges such that e1 n el+I

S0 for each i from 1 to k-l. If a

path begins and ends on the same node

CIRCUIT it is called a circuit. Paths and

circuits are thus allowed to repeat

nodes, but not edges. A circuit (with

k > 2) which furthermore doe.s not

CYCLE repeat nodes is called a cycle.

CONNECTED A graph is connected if it contains

a path between any two distinct nodes.

A graph which is connected but contains

TREE no cycles is called a tree. If agraph

contains no cycles, then its connected

COMPONENTS components are trees, so naturally it

FOREST is called a forest.
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If G and H are graphs, all nodes of

G are nodes of H, and all edges of G

SUBGRAPH are edges of H, then G is a subgraph

of H. If furthermore all the edges

of H on pairs of nodes of G are also

INDUCED SUBGRAPH edges of G, then G is an induced

subgraph of H. Thus each subset

of nodes of H may have several

subgraphs, but each subset of nodes

determines exactly one induced

subgraph.

VALENCE The valence of a node is the number

DEGREE of edges on it. "Valence" and "degree"

mean the same thing. A graph is called

"REGULAR regular if all its nodes have the

same valence.

COMPLEMENT Z The complement C of a graph G is a

graph with the same nodes as G, but

each pair of nodes is an edge of U iff
it is not an edge of G.

The graph with n nodes which has (Q)

edges (i.e., every possible edge is

THE COMPLETE present) is usually denoted by Kn. It

GRAPH Kn is called the complete graph.
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If the nodes are partitioned into

two sets A and B, with IAI = a and

IBI - b, and the graph has an edge on

two nodes iff one is in A and the

other is in B, then the graph is the

COMPLETE BIPARTITE complete bipartite graph denoted by

GRAPH Kab Ka,b.

Here are two examples of applications.

1. In the Leech tree of chapter 1 the five edge numbers

could be the values of resistors. Then the tree

would provide an efficient resistance standard,

giving resistances 1,2,...,15.

2. As pointed out by Robert Scholtz, a choosability

problem could arise in a communication network when

some pairs of terminals are forbidden to use the

same frequency. A degree of freedom could be gained

by only having to require that each terminal have a

specified number of frequencies available (not which

frequencies - only how many), if we knew that a

nonconflicting choice could be made at any time.
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